コンピュータネットワーク(2019) #07-08(2019)

学籍番号	クラス _(2C,3C,)	出席番号	氏名

・進め方

- この紙は配布物です、どうぞ、お持ち帰りください。試験の前の復習に使うでしょうから、まとめておくとよいでしょう。
- 確認テストは、ELのコースに設定されています。授業の終わりごろに有効になります。この 紙にある問題が確認テストにそのまま出るわけではありませんが、似たような方向のものが出 ます。
- 感想、質問等はポータルのアンケートコーナーへどうぞ。

•ハイライト

て返事をする (10)

一方、HTTP をはじめ多くのサービスがデータ転送にもちいている <u>TCP</u> プロトコルは (パケット
を確実に転送する) (1) のある (2) 通信を提供することが目的である。ま
た、フロー制御や多重化といった機能も提供する。そういった利便性の高いプロトコルのため処理が
重たい。
$\overline{}$ TCP は OSI モデルの第 (3) 階層に相当するステートフルプロトコルだ。状態があり、
状態の移り変わりを状態遷移と呼ぶ。
TCP パケットは制御情報をもつ (4) 部分とデータ部分からなる。その TCP 制御情報
部には (5) (HTTP なら 80) をはじめ多くの情報が含まれている。それらの情報を用いて
TCP は状態を管理している。なお、ここで IP アドレスは含まれないことに注意したい。
TCP <u>ヘッダ</u> にある (6) (以下 SEQ) とアクノリッジ番号 (以下 ACK) を用いて、どこま
で転送したかを管理している。
TCP の通信は初期化から始まる。この際、パケットが 3 回行き交うので、 $\overline{(7)}$ と呼ば
れている。この時、うまく処理がすすんでいることを表現するために、ACKに +1 して返事をする。
そのため、SEQ 100 で始まった初期化プロセスが終わると、SEQ は (8) になっている
(図 1 参照)。また、この接続が確立された状態を $ESTABLISHED$ と呼んでいる (教科書の状態遷移図
の真中にあたる)。
一方、通常転送時は、無事に転送できたサイズ分ずれていく取り決めだ。よって、SEQ 900 から
1500 バイト転送が終われば、SEQ は (9) になっている (図 2)。この SEQ や ACK の数
字を管理することで、エラー判定や再送処理を行う。
なお、インターネットのパケット往復時間は相当長い。北海道と東京なら 50ms はかかるので、一
秒間でせいぜい 20 往復、一回 1400 バイト送れたとしても秒速 28k バイトのデータしか送れない。こ

れは毎回りちぎに返事をするからなので、受信側は、まとめて返事をする (ACK を返す) ことにしている。送信側も、それをみこんで、ある程度見切り発車で次々とパケットを送り出す。この、まとめ

処理が転送処理能力をあげる上で重要である。

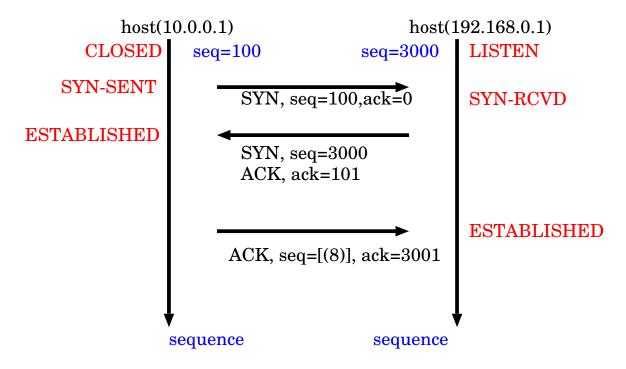


図 1: TCP の初期化: 3 way handshake

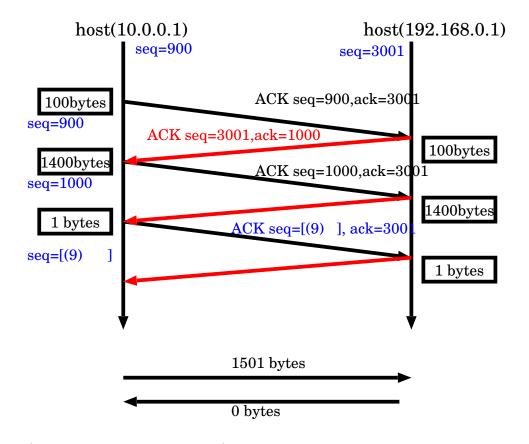


図 2: TCP のデータ転送: 簡単化のため、データの流れが一方通行 $(10.0.0.1 \rightarrow 192.168.0.1)$ の例。前図より少し転送が進んだ段階で、sequence number = 900 からの転送であることに注意。